Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mitochondrial DNA B Resour ; 9(4): 437-441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586509

RESUMO

Eremurus zoae Vved. 1971 is a perennial herbaceous plant in the family Asphodelaceae and an endemic species of the Kyrgyz Republic; however, its complete chloroplast genome sequence has not been reported. Here, we investigated the complete chloroplast (cp) genome of E. zoae using next-generation sequencing. The cp genome was 153,744 bp long, with a large single copy (84,020 bp), a small single copy (16,766 bp), and a pair of inverted repeats (26,479 bp). The genome encodes 132 genes, including 86 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Phylogenetic analysis revealed that the genus Eremurus forms a monophyletic group and E. zoae is closely related to E. chinensis. This study provides a molecular foundation for future phylogenetic studies of Eremurus.

2.
Funct Integr Genomics ; 24(2): 42, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396290

RESUMO

Four species of Saussurea, namely S. involucrata, S. orgaadayi, S. bogedaensis, and S. dorogostaiskii, are known as the "snow lotus," which are used as traditional medicines in China (Xinjiang), Kyrgyzstan, Mongolia, and Russia (Southern Siberia). These species are threatened globally, because of illegal harvesting and climate change. Furthermore, the taxonomic classification and identification of these threatened species remain unclear owing to limited research. The misidentification of medicinal species can sometimes be harmful to health. Therefore, the phylogenetic and genomic features of these species need to be confirmed. In this study, we sequenced five complete chloroplast genomes and seven nuclear ITS regions of four snow lotus species and other Saussurea species. We further explored their genetic variety, selective pressure at the sequence level, and phylogenetic relationships using the chloroplast genome, nuclear partial DNA sequences, and morphological features. Plastome of the snow lotus species has a conserved structure and gene content similar to most Saussurea species. Two intergenic regions (ndhJ-ndhK and ndhD-psaC) show significantly high diversity among chloroplast regions. Thus, ITS and these markers are suitable for identifying snow lotus species. In addition, we characterized 43 simple sequence repeats that may be useful in future population genetic studies. Analysis of the selection signatures identified three genes (rpoA, ndhB, and ycf2) that underwent positive selection. These genes may play important roles in the adaptation of the snow lotus species to alpine environments. S. dorogostaiskii is close to S. baicalensis and exhibits slightly different adaptation from others. The taxonomic position of the snow lotus species, confirmed by morphological and molecular evidence, is as follows: (i) S. involucrata has been excluded from the Mongolian flora due to misidentification as S. orgaadayi or S. bogedaensis for a long time; (ii) S. dorogostaiskii belongs to section Pycnocephala subgenus Saussurea, whereas other the snow lotus species belong to section Amphilaena subgenus Amphilaena; and (iii) S. krasnoborovii is synonymous of S. dorogostaiskii. This study clarified the speciation and lineage diversification of the snow lotus species in Central Asia and Southern Siberia.


Assuntos
Asteraceae , Lotus , Saussurea , Saussurea/genética , Saussurea/química , Filogenia , Sibéria
3.
Gene ; 894: 147963, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926173

RESUMO

Sophora koreensis Nakai, an endemic species distributed only in the Korean Peninsula, is of great geographical, economic, and taxonomic importance. Although its complete chloroplast (cp) genome sequence has been reported, its mitochondrial (mt) genome sequence has not yet been studied. Therefore, in this study, we aimed to investigate its mt genome sequence and compare it with those reported for other Fabaceae species. Total genomic DNA was extracted from fresh S. koreensis leaves collected from natural habitats in Gangwon-do Province, South Korea. This was followed by polymerase chain reaction (PCR) amplification of cpDNA insertions in the mt genome and the detection of microsatellites and dispersed repeats in the cp and mt genomes. Finally, the cp and mt genomes of S. koreensis were compared with those reported for other Fabaceae species. The cp sequence of S. koreensis showed identical gene orders and contents as those previously reported. Only six substitutions and one deletion were detected with 99 % homology. Conversely, the complete mt genome sequence, which was 517,845 bp in length and encoded 61 genes, including 43 protein-coding, 15 transfer RNAs, and 3 ribosomal RNA genes, was considerably different from that of S. japonica in terms of gene order and composition. Further, the mt genome of S. koreensis included ca. 7 and 3 kb insertions, representing an intracellular gene transfer (IGT) event, and the regions with these insertions were determined to be originally present in the cp genome. This IGT event was also confirmed via PCR amplification. IGT events can be induced via biological gene expression control or the use of repetitive sequences, and they provide important insights into the evolutionary lineage of S. koreensis. However, further studies are needed to clarify the gene transfer mechanisms between the two organelles.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Sophora , Genoma Mitocondrial/genética , Cloroplastos/genética , Sequências Repetitivas de Ácido Nucleico , Genoma de Cloroplastos/genética , Sophora/genética , Filogenia , Análise de Sequência de DNA
4.
Front Plant Sci ; 14: 1124277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025138

RESUMO

The genus Allium, with over 900 species, is one of the largest monocotyledonous genera and is widely accepted with 15 recognized subgenera and 72 sections. The robust subgeneric and sectional relationships within Allium have long been not resolved. Based on 76 species of Allium (a total of 84 accessions), we developed a highly resolved plastome phylogenetic framework by integrating 18 newly sequenced species (20 accessions) in this study and assessed their subgeneric and sectional relationships, with special emphasis on the two subgenera Anguinum and Rhizirideum. We retrieved the three major evolutionary lines within Allium and found that the two subgenera Anguinum and Rhizirideum are monophyletic whereas others are highly polyphyletic (e.g., Allium, Cepa, Polyprason, and Melanocrommyum). Within the subgenus Anguinum, two strongly supported sublineages in East Asian and Eurasian-American were found. Allium tricoccum in North America belonged to the Eurasian clade. The distinct taxonomic status of A. ulleungense and its sister taxon were further determined. In subg. Rhizirideum, the Ulleung Island endemic A. dumebuchum shared its most recent common ancestor with the species from Mongolia and the narrow Korean endemic A. minus. Two Ulleung Island endemics were estimated to originate independently during the Pleistocene. In addition, a separate monotypic sectional treatment of the east Asian A. macrostemon (subg. Allium) and sister relationship between A. condensatum and A. chinense was suggested.

5.
Sci Rep ; 12(1): 16262, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171257

RESUMO

This study was to understand the genetic structure and diversity of the Korean Malus species. We used genotyping-by-sequencing (GBS) technology to analyze samples of 112 individuals belonging to 18 populations of wild Malus spp. Using GBS, we identified thousands of single nucleotide polymorphisms in the species analyzed. M. baccata and M. toringo, two dominant mainland species of the Korean Peninsula, were distinguishable based on their genetic structure. However, M. toringo collected from Jeju Island exhibited a different genetic profile than that from the mainland. We identified M. cf. micromalus as a hybrid resulting from the Jeju Island M. toringo (pollen donor) and the mainland M. baccata, (pollen recipient). Putative M. mandshurica distributed on the Korean Peninsula showed a high structural and genetic similarity with M. baccata, indicating that it might be an ecotype. Overall, this study contributes to the understanding of the population history and genetic structure of Malus in the Korean Peninsula.


Assuntos
Malus , Estruturas Genéticas , Variação Genética , Genótipo , Humanos , Malus/genética , República da Coreia
6.
Front Plant Sci ; 12: 678580, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512682

RESUMO

Functional gene transfer from organelles to the nucleus, known as intracellular gene transfer (IGT), is an ongoing process in flowering plants. The complete plastid genomes (plastomes) of two Ulleung island endemic violets, Viola ulleungdoensis and V. woosanensis, were characterized, revealing a lack of the plastid-encoded infA, rpl32, and rps16 genes. In addition, functional replacement of the three plastid-encoded genes in the nucleus was confirmed within the genus Viola and the order Malpighiales. Three strategies for the acquisition of a novel transit peptide for successful IGT were identified in the genus Viola. Nuclear INFA acquired a novel transit peptide with very low identity between these proteins, whereas the nuclear RPL32 gene acquired an existing transit peptide via fusion with the nuclear-encoded plastid-targeted SOD gene (Cu-Zn superoxide dismutase superfamily) as one exon, and translated both proteins in the cytosol using alternative mRNA splicing. Nuclear RPS16 contains an internal transit peptide without an N-terminal extension. Gene loss or pseudogenization of the plastid-borne rpl32 and rps16 loci was inferred to occur in the common ancestor of the genus Viola based on an infrageneric phylogenetic framework in Korea. Although infA was lost in the common ancestor of the order Malpighiales, the rpl32 and rps16 genes were lost multiple times independently within the order. Our current study sheds additional light on plastid genome composition and IGT mechanisms in the violet genus and in the order Malpighiales.

7.
Plants (Basel) ; 10(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669616

RESUMO

Previous studies on the chloroplast genome in Clematis focused on the chloroplast structure within Anemoneae. The chloroplast genomes of Cleamtis were sequenced to provide information for studies on phylogeny and evolution. Two Korean endemic Clematis chloroplast genomes (Clematis brachyura and C. trichotoma) range from 159,170 to 159,532 bp, containing 134 identical genes. Comparing the coding and non-coding regions among 12 Clematis species revealed divergent sites, with carination occurring in the petD-rpoA region. Comparing other Clematis chloroplast genomes suggested that Clematis has two inversions (trnH-rps16 and rps4), reposition (trnL-ndhC), and inverted repeat (IR) region expansion. For phylogenetic analysis, 71 protein-coding genes were aligned from 36 Ranunculaceae chloroplast genomes. Anemoneae (Anemoclema, Pulsatilla, Anemone, and Clematis) clades were monophyletic and well-supported by the bootstrap value (100%). Based on 70 chloroplast protein-coding genes, we compared nonsynonymous (dN) and synonymous (dS) substitution rates among Clematis, Anemoneae (excluding Clematis), and other Ranunculaceae species. The average synonymoussubstitution rates (dS)of large single copy (LSC), small single copy (SSC), and IR genes in Anemoneae and Clematis were significantly higher than those of other Ranunculaceae species, but not the nonsynonymous substitution rates (dN). This study provides fundamental information on plastid genome evolution in the Ranunculaceae.

8.
Mitochondrial DNA B Resour ; 5(3): 3616-3617, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33367032

RESUMO

The complete chloroplast genome sequence of Astilboides tabularis, one of endemic species of Eastern Asia, was determined. The chloroplast genome was 157,147 bp in length with large single-copy (87,703 bp), small single-copy (18,268 bp) and a pair of inverted repeats (25,588 bp). In total, 131 genes were encoded, including 86 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The phylogenetic analysis using concatenated 77 protein-coding genes of 15 species chloroplast genome revealed that A. tabularis was sister to the clade containing Bergenia, Oresitrophe, and Mukdenia.

9.
J Plant Res ; 133(6): 765-782, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32815044

RESUMO

Scrophularia takesimensis is a critically endangered endemic species of Ulleung Island, Korea. A previous molecular phylogenetic study based on nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequences with very limited sampling suggested that it is most closely related to the clade comprising S. alata and S. grayanoides. To determine the origin of S. takesimensis, we sampled a total of 171 accessions including S. takesimensis (9 populations and 63 individuals) and two closely related species, S. alata (11 populations and 68 individuals) and S. grayanoides (5 populations and 40 individuals) from eastern Asia and sequenced ITS and two chloroplast DNA (cpDNA) non-coding regions. Previously sequenced representative species of Scrophularia (109 taxa for ITS and 80 taxa for cpDNA) were combined with our data set and analyzed. While the global scale ITS phylogenetic tree suggests monophyly for each of the three eastern Asian species, S. takesimensis appears to be more closely related (albeit weakly) to a clade containing eastern North American/Caribbean species than to either S. alata or S. grayanoides. By contrast, the global scale cpDNA phylogenetic tree demonstrates that the eastern North America/Caribbean clade is sister to a clade comprising the three eastern Asian species. In addition, the monophyletic S. takesimensis is deeply embedded within paraphyletic S. alata, sharing its most recent common ancestor with populations from Japan/Sakhalin. Two divergent, geographically structured cp haplotype groups within S. takesimensis suggest at least two independent introductions from different source areas. A new and accurate chromosome number of S. takesimensis (2n = 94) is reported and some conservation strategies are discussed.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Filogenia , Scrophularia/classificação , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Evolução Molecular , Ilhas , República da Coreia , Análise de Sequência de DNA
10.
Mitochondrial DNA B Resour ; 4(2): 2666-2667, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-33365674

RESUMO

The complete chloroplast genome sequence of Liparis yongnoana was determined and analyzed in this study. The chloroplast genome size is 153,165 bp in length with 36.9% GC content. It comprises a large single-copy region (LSC) of 83,690 bp, a small single copy region (SSC) of 17,661 bp, and a pair of inverted repeat regions (IRa and IRb) of 25,907 bp separated by the SSC. The genome contains 132 genes, including 86 protein-coding, eight ribosomal RNA, and 38 transfer RNA genes. Phylogenetic analysis inferred from 16 Orchidaceae chloroplast genomes suggested that L. yongnoana was closely related to L. loeselii.

11.
Mitochondrial DNA B Resour ; 3(1): 284-285, 2018 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33474144

RESUMO

The complete chloroplast genome sequence of Sorbus ulleungensis, a recently described endemic species to Ulleung Island of Korea, was determined. The genome size was 159,632 bp in length with 36.5% GC content. It included a pair of inverted repeats (IRa and IRb) of 26,402 bp, which were separated by small single copy (SSC: 18,824 bp) and large single copy (LSC: 88,003 bp) regions. The cp genome contained 111 genes, including 78 protein coding genes, 29 tRNA genes, and four rRNA genes. Phylogenetic analysis of the combined 78 protein coding genes and four rRNA genes showed that S. ulleungensis was most closely related to Pyrus pyrifolia.

12.
Mitochondrial DNA B Resour ; 2(2): 650-651, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-33473934

RESUMO

The complete chloroplast genome sequence of Saussurea polylepis, one of vulnerable and endemic species of Korea, was determined. The genome size was 152,488 bp in length with 37.7% GC content. It included a pair of inverted repeats (IRa and IRb) of 25,191 bp, which were separated by small single copy (SSC: 18,689 bp) and large single copy (LSC: 83,417 bp) regions. The cp genome contained 113 genes, including 80 protein-coding genes, 29 tRNA genes, and four rRNA genes. Phylogenetic analysis of the combined 80 protein coding genes and four rRNA genes showed that S. polylepis was closely related to S. chabyoungsanica.

13.
J Plant Res ; 129(5): 807-822, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27206724

RESUMO

Ulleung Island is an oceanic volcanic island in Korea, which has never been connected to the adjacent continent. Previous studies highlighted Ulleung Island as an excellent system to study the pattern and process of early stages of flowering plant evolutions on oceanic island. The predominant mode of speciation in flowering plants on Ulleung Island appears to be anagenesis. However, the potentially important role of hybrid speciation among incompletely reproductively isolated lineages cannot be ruled out. Viola woosanensis (Violaceae) is of purportedly hybrid origin between V. ulleungdoensis (i.e., formerly recognized as V. selkirkii in Ulleung Island) and V. chaerophylloides, based on morphology. To examine the origin of V. woosanensis, we sampled a total of 80 accessions, including V. woosanensis and its putative parental species and sequenced nrDNA ITS, and four highly variable chloroplast noncoding regions (trnL-trnF, rpl16 intron, atpF-atpH, and psbA-trnH). Representative species of Viola from Korea were also included in the phylogenetic analyses (maximum parsimony, maximum likelihood, and Bayesian inference). Additive polymorphic sites in the nrDNA ITS regions were confirmed by cloning amplicons from representative species. The molecular data strongly supported the hybrid origin of V. woosanensis, and the maternal and paternal parent were determined to be V. ulleungdoensis and V. chaerophylloides, respectively. The presence of two parental ribotypes in V. woosanensis (with the exception in one population) was confirmed by cloning, suggesting V. woosanensis is primarily the F1 generation. No trace of backcrossing and introgression with its parents was detected due to low fertility of hybrid species. We found a multiple and unidirectional hybrid origin of V. woosanensis. Additional studies are required to determine which factors contribute to asymmetric gene flow of Viola species in Ulleung Island.


Assuntos
Hibridização Genética , Ilhas , Viola/genética , Teorema de Bayes , DNA de Cloroplastos/genética , DNA Espaçador Ribossômico , Geografia , Haplótipos/genética , Filogenia , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...